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Abstract. Seasonal snow has crucial impacts on climate, ecosystems and humans, but it is vulnerable to global warming. The 10 

land component (ELM) of the Energy Exascale Earth System Model (E3SM), mechanistically simulates snow processes from 

accumulation, canopy interception, compaction, snow aging to melt. Although high-quality field measurements, remote 

sensing snow products and data assimilation products with high spatio-temporal resolution are available, there has been no 

systematic evaluation of the snow properties and phenology in ELM. This study comprehensively evaluates ELM snow 

simulations over the western United States at 0.125° resolution during 2001-2019 using the Snow Telemetry (SNOTEL) in 15 

situ networks, MODIS remote sensing products (i.e., MCD43 surface albedo product, the spatially and temporally complete 

(STC) Snow-Covered Area and Grain Size (MODSCAG) and MODIS Dust and Radiative Forcing in Snow (MODDRFS) 

products (STC-MODSCAG/STC-MODDRFS), and the Snow Property Inversion from Remote Sensing (SPIReS) product) 

and two data assimilation products of snow water equivalent and snow depth (i.e., University of Arizona (UA) and SNOw 

Data Assimilation System (SNODAS)). Overall the ELM simulations are consistent with the benchmarking datasets and 20 

reproduce the spatio-temporal patterns, interannual variability and elevation gradients for different snow properties including 

snow cover fraction (fsno), surface albedo (𝛼sur) over snow cover regions, snow water equivalent (SWE) and snow depth (Dsno). 

However, there are large biases of fsno with dense forest cover and 𝛼sur in the Rocky Mountains and Sierra Nevada in winter, 

compared to the MODIS products. There are large discrepancies of snow albedo, snow grain size and light-absorbing particles 

induced snow albedo reduction between ELM and the MODIS products, attributed to uncertainties in the aerosol forcing data, 25 

snow aging processes in ELM, and remote sensing retrievals. Against UA and SNODAS, ELM has a mean bias of -20.7mm 

(-35.9%) and -20.4 mm (-35.5%), respectively for spring, and -13.8 mm (-27.8%) and -10.2 mm (-22.2%), respectively for 

winter. ELM shows a relatively high correlation with SNOTEL SWE, with mean correlation coefficients of 0.69, but negative 

mean biases of -122.7 mm, respectively. Compared to the snow phenology of STC-MODSCAG and SPIReS, ELM shows 

delayed snow accumulation onset date by 17.3 and 12.4 days, earlier snow end date by 35.5 and 26.8 days, and shorter snow 30 

duration by 52.9 and 39.5 days. This study underscores the need for diagnosing model biases and improving ELM 
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representations of snow properties and snow phenology in mountainous areas for more credible simulation and future 

projection of mountain snowpack. 

1 Introduction 

Snow, a key component of the cryosphere, has a large influence on the terrestrial energy budget and water and carbon cycles 35 

(Berghuijs et al., 2014; Niittynen et al., 2018). With high albedo and low thermal conductivity, snow also affects regional 

climate (Flanner et al., 2011; Henderson et al., 2018; Skiles et al., 2018). Under global warming, less precipitation will fall as 

snow and snow will melt earlier (Barnett et al., 2005), which will have large impacts on water availability in snow-dominated 

regions (Barnett et al., 2005; Musselman et al., 2021). Climate models project the snow water equivalent (SWE) declines of 

~25% by 2050 for the Western United States (WUS; see Table A1 for acronyms and symbols used in the study) (Musselman 40 

et al., 2021; Siirila-Woodburn et al., 2021), with large impacts on ecosystem function, wildlife habitats, flood hazard, tourism, 

recreation and socio-economic activities (Hamlet and Lettenmaier, 2007; Mameno et al., 2022). Accurately characterizing and 

projecting future changes in snow processes and timing of these changes is crucial for planning our response to climate change. 

 

Numerous parameterizations and models with various degrees of complexity have been developed to simulate seasonal snow 45 

dynamics and improve our understanding of snow processes (Krinner et al., 2018; Lee et al., 2021; Magnusson et al., 2015). 

These parameterizations/models have been coupled to land surface models (LSMs) (Krinner et al., 2018) to represent snow 

grain particles (Räisänen et al., 2017), snow cover (Swenson and Lawrence, 2012), snow albedo (Flanner et al., 2007), 

snowpack compaction (Decharme et al., 2016), and snow interception by vegetation (Lundquist et al., 2021). The Energy 

Exascale Earth System Model (E3SM) Land Model (ELM) (Leung et al., 2020) includes a multi-layer snow scheme to simulate 50 

the prognostic snow processes such as snow accumulation, snow interception, snow compaction, and snow melt. Recently, the 

snow albedo model in ELM was improved to include new radiative transfer solvers with improved accuracy (Dang et al., 

2019), add non-spherical snow grain shape (Hao et al., 2022a), account for the internal mixing of light-absorbing particles 

(LAPs) with snow (Böttcher et al., 2014); Hao et al., 2022a), and incorporate new parameterizations to account for the sub-

grid topographic effects on solar radiation (Hao et al., 2021; Hao et al., 2022b) (see Section 2.1 for details). With these 55 

enhancements and improvements, ELM may skillfully simulate snow dynamics at a regional scale (e.g., WUS). 

 

Previous studies evaluated simulations of snow cover fraction (fsno), SWE, snow depth (Dsno) (Toure et al., 2018; Toure et al., 

2016) and snowmelt timing (Toure et al., 2018) in the Community Land Model V4 (CLM4) in the Northern Hemisphere at a 

coarse spatial resolution of 0.5°×0.67°. The 0.25° simulations of surface albedo (𝛼sur), fsno and SWE in the Canadian Land 60 

Surface Scheme (CLASS) were evaluated over eastern Canada (Verseghy et al., 2017), but snow phenology was not assessed. 

Monthly SWE in the 1° coupled land-atmosphere simulations of E3SM v1 was evaluated over the Contiguous United States 

by (Brunke et al., 2021), who attributed SWE uncertainties to the biases in temperature and precipitation. Overall, previous 
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studies only evaluated a few snow variables in LSMs mostly at coarse spatial resolutions (Table A2), although more high-

resolution remote sensing observations and data assimilation products of snow variables (e.g., snow albedo (𝛼sno), snow grain 65 

size (Ssno) and snow albedo reduction induced by LAPs in snow (Rsno)) have become available. The snow phenology in LSMs 

has rarely been evaluated explicitly and how LSMs capture the interannual variability of snow variables and how those 

variables vary along an elevation gradient have not been well investigated. 

 

A series of high-quality field snow measurements, remote sensing and data assimilation snow datasets/products with high 70 

spatio-temporal resolution are available over the WUS. The in situ Snow Telemetry (SNOTEL) stations widely distributed 

across the WUS provide long-term SWE field measurements (Serreze et al., 1999). Optical remote sensing data has been 

widely used to map snow dynamics (Dietz et al., 2012; Dong, 2018). The Moderate Resolution Imaging Spectroradiometer 

(MODIS) reflectance data at 463 m spatial resolution have been used to retrieve multiple key snow-related variables 

including 𝛼sur (Schaaf et al., 2002), fsno (Bair et al., 2021c; Painter et al., 2009), 𝛼sno, Ssno, and Rsno (Bair et al., 2021c; Painter 75 

et al., 2012). These MODIS data accurately capture snow dynamics during accumulation and melt (Rittger et al., 2013; 

Wang et al., 2018) and the high daily temporal resolution of these datasets is helpful for capturing rapid snow variations. 

Some available remote sensing snow phenology products (Chen et al., 2015; Metsämäki et al., 2018; Takala et al., 2009) 

adopt different optical or microwave satellite observations to extract snow phenology date and duration. Besides, they use 

different snow phenology definitions, and include different snow phenology metrics, which can affect their use as a 80 

reference. Alternatively, the same phenology extraction methods can be used to derive snow phenology metrics for both 

LSMs and MODIS daily fsno data, avoiding inconsistencies of definitions and extraction methods. Data assimilated SWE and 

snow depth (Dsno) products are also available that integrate field measurements, remote sensing observations, and model 

simulations (Center, 2004; Zeng et al., 2018). These data assimilation products have high spatial resolution of <5 km and 

higher reliability over mountainous and forested regions due to the constraints of in situ networks (Dawson et al., 2018). 85 

These datasets provide good opportunity for comprehensively evaluating the accuracy of snow variables and snow 

phenology in LSMs. 

 

The aim of this study is to systematically evaluate the high-resolution 0.125° ELM simulations of key snow variables and 

snow phenology over the WUS, using in situ, remote sensing and data assimilation snow products. Specifically, offline ELM 90 

simulations with new improvements related to snow processes over the WUS were conducted during 2001-2019. Field snow 

measurements, three MODIS remote sensing products, and two data assimilation snow products were collected as 

benchmarking datasets for the ELM simulations (see Section 2.3 for details). All the ELM outputs and benchmarking datasets 

were regridded to an identical spatio-temporal resolution of 0.125° and daily. Snow properties variables including 𝛼sur, fsno, 

𝛼sno, Ssno, Rsno, SWE and Dsno were used in the analysis. Multiple snow phenology metrics were derived from both ELM and 95 

remote sensing products using the same definitions and extraction methods (see Section 2.4 for details). The spatial patterns, 

temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow 
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phenology in ELM were evaluated against the benchmarking datasets. Uncertainties in the ELM and benchmarking datasets, 

implications for model improvements and limitations of the study are discussed. 

2 Materials and Methods 100 

2.1 Model description 

ELM, the land component of E3SM, originates from the Community Land Model Version 4.5 (CLM4.5) (Golaz et al., 2019). 

ELM uses a multi-layer scheme (up to 5 layers by default) to dynamically simulate various snow processes, e.g., snow 

accumulation, melting, aging (i.e., the evolution of snow grain size), compaction, metamorphism, aerosol deposition and 

redistribution, and canopy snow interception and unloading. Specifically, ELM uses the Snow, Ice, and Aerosol Radiative 105 

(SNICAR) model to calculate snow albedo and vertically-resolved absorption of solar radiation, considering the evolving snow 

grain size, solar zenith angles (SZAs), sky conditions, underlying background and snow impurities (e.g., black carbon (BC) 

and dust) (Flanner et al., 2007). ELM uses the snow water equivalent (SWE) and standard deviation of elevation to estimate 

snow cover fraction (fsno). The hysteresis of snow accumulation and ablation is also accounted for in ELM (Swenson and 

Lawrence, 2012). 110 

 

Compared to CLM4.5, some key updates related to snow processes have been included in ELM. First, the original SNICAR 

model has been replaced by a hybrid model (SNICAR-AD) of SNICAR and delta-Eddington adding–doubling radiative 

transfer solver, which corrects the snow albedo bias for large SZAs and can better represent the shortwave radiative properties 

of snow (Dang et al., 2019). Second, compared to only external mixing in CLM4.5, both external mixing and internal mixing 115 

of hydrophilic BC-snow and dust-snow are now represented in ELM (Hao et al., 2022a; Wang et al., 2020). Third, the direct 

and diffuse irradiance under different atmospheric profiles and their dependence on SZA are included (Hao et al., 2022a). 

Fourth, the effects of non-spherical snow grain shape on snow albedo are considered (Hao et al., 2022a). Fifth, a new 

parameterization of sub-grid topographic effects on solar radiation has been implemented in ELM to account for the impacts 

of macro-scale shadow, occlusion and multi-scattering between adjacent terrain on surface albedo (Hao et al., 2021; Hao et 120 

al., 2022b). 

2.2 Model setup and experiment design 

Selected for this study, the WUS has heterogeneous topography with diverse elevations ranging from 0 to above 3 km (Figure 

1a). The WUS includes three major mountain ranges: the Cascades Range, Sierra Nevada, and Rocky Mountains, which are 

characterized by frequent snow cover. The elevation data was acquired from the Shuttle Radar Topography Mission (SRTM) 125 

DEM dataset (Rabus et al., 2003). The forest cover data in 2010 shown in Figure 1b was acquired from the 30 m Landsat 

Vegetation Continuous Fields (VCF) tree cover datasets derived from the GFCC Surface Reflectance product (Sexton et al., 

2013). Both the DEM and forest cover data were aggregated to 0.125° using the area-weighted average method. For analysis, 
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elevations were divided into different intervals (see Figure 1c). Elevations less than 0.5 km are not included in the statistical 

analysis as snow cover is close to 0. The forest cover was divided into five levels (see Figure 1d). The area fractions of different 130 

intervals of elevation and forest cover are shown in Figure 1c and 1d, respectively. 

 

ELM simulations at 0.125° spatial resolution were conducted over the WUS from 1979 to 2019 driven by hourly 

meteorological forcing data from the National Land Data Assimilation System phase 2 (NLDAS-2) with spatial resolution of 

0.125° (Xia et al., 2012). Specifically, the prescribed satellite phenology (SP) mode was used with input of MODIS leaf area 135 

index data (Myneni et al., 2002). The climatological monthly aerosol deposition data (e.g., black carbon and dust) with a spatial 

resolution of 1.9°×2.5° from the Community Atmosphere Model version 5 coupled with chemistry (Lamarque et al., 2010) 

was used, which was temporally and spatially downscaled to half-hourly and 0.125° using bilinear interpolation. For the snow 

albedo module, SNICAR-AD was configured with: 1) the SZA-dependence solar irradiance under the mid-latitude winter 

atmosphere, 2) spherical snow grain shape, 3) internal mixing of hydrophilic BC-snow, (4) external mixing of dust-snow, and 140 

(5) neglect of organic carbon due to its high uncertainties. The sub-grid topographic effects on solar radiation were included 

in the ELM configuration. The model was run at a half-hourly step. The first 31-year run from 1979 to 2000 was used to spin-

up the model to reach equilibrium and then the remaining 19-year run (i.e. 2001-2019) was used in the analysis. The variables 

of interest were output at half-hourly, daily and monthly scales. 
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Figure 1: Spatial distributions of (a) elevation and SNOTEL sites (grey points) and (b) forest cover over the WUS, and the area 

proportions of different (c) elevation and (d) forest cover intervals. The Cascades Range, Sierra Nevada, and Rocky Mountains are 

highlighted in panel (b). 

2.3 Benchmarking datasets 150 

In situ Bias Correction and Quality Control (BCQC) SNOTEL daily SWE data from 2001-2019 (Table 1) were used as the 

benchmarking dataset to evaluate the performance of ELM. SNOTEL stations, operated by the U.S. Department of Agriculture 

Natural Resources Conservation Service (NRCS) provide long-term, widely-distributed and high-quality field measurements 

of SWE across the WUS (https://www.nrcs.usda.gov/). BCQC SNOTEL eliminated data outliers and erroneous values, fixed 

the inconsistencies of different variables, and corrected the bias of the raw data (Sun et al., 2019; Yan et al., 2018). Specifically, 155 

788 SNOTEL sites in the WUS were included in the study (Figure 1a). 
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Three daily 463 m MODIS-based remote sensing products from 2001-2019 were used to evaluate the performance of ELM 

(Table 1). The first one is the MCD43A3 surface albedo version 6 product (named as MCD43 hereafter). The MCD43 product 

provides black-sky and white-sky surface albedo at local solar noon (Schaaf et al., 2002), which could well capture the snow 160 

effects on 𝛼sur (Wang et al., 2018). This dataset represents the albedo of the entire MODIS pixel which could include vegetation 

or soil if the observed pixel is not 100% snow cover, and thus it will underestimate snow albedo for fractionally covered pixels 

as vegetation and soil have darker broadband albedos. The second one is the spatially and temporally complete (STC) MODIS 

Snow-Covered Area and Grain size (MODSCAG) and MODIS Dust and Radiative Forcing in Snow (MODDRFS) product 

(we hereafter refer to as STC-MODSCAG/STC-MODDFRS). The third one is the Snow Property Inversion From Remote 165 

Sensing (SPIReS) product. These two products provide fsno, 𝛼sno, Ssno, and Rsno at around 10:30 am local solar time and represent 

𝛼sno (i.e. excluding soil and vegetation portions of the observed pixel). STC-MODSCAG first estimates fsno and Ssno based on 

the spectral unmixing and physically-based snow radiative transfer models (Painter et al., 2009). STC-MODDRFS then uses 

Ssno to calculate the 𝛼sno of the clean snow with difference between clean and dirty (observed) snow for computing Rsno (Painter 

et al., 2012). SPIReS adopts a physically-based approach without empirical assumptions to simultaneously estimate fsno, 𝛼sno, 170 

Ssno, and Rsno (Bair et al., 2021c). Both STC-MODSCAG/STC-MODDRFS and SPIReS are interpolated and smoothed to 

reduce the effects of data noise, cloud contamination and sun-sensor geometry (Bair et al., 2021c; Dozier et al., 2008; Rittger 

et al., 2020). Both of the fsno products show good performance with the basin-wide root mean square error (RMSE) values of 

6.5% and 6.7% against airborne lidar datasets (Stillinger et al., 2022). Initial validation against field measurements for Ssno at 

a single site for the original MODSCAG shows a 51 µm mean absolute error for a clear sky day (Painter et al., 2009). The gap 175 

filled MODSCAG/MODDRFS at three sites in the WUS has an accuracy (RMSE) of 118 µm for Ssno and 0.0036 for Rsno (Bair 

et al., 2019) considering both clear and cloud days. SPIReS has a 𝛼sno RMSE of 4.6% against the 3-year field measurements at 

Mammoth Mountain, CA (Bair et al., 2021c), nearly identical to the reported accuracy of 4.8% RMSE for STC-MODDRFS 

agaist the field measurements at the same site (Bair et al., 2019). Note that there is an underestimation of fsno in the northern 

WUS region in winter occur because of a known issue in current versions of STC-MODSCAG (https://nsidc.org/reports/snow-180 

today?title=6). Specifically, MOD09GA surface reflectance processed to produce STC-MODSCAG at the Jet Propulsion 

Laboratory (JPL) is not processed when SZA is larger than 67.5°. This issue is being resolved during the transfer of processing 

during 2022 to 2023 from JPL to the National Snow and Ice Data Center Distributed Active Archive. We conservatively 

excluded data north of 42° in latitude during the winter in our comparisons in Section 3.1.  

 185 

Two data assimilation SWE and Dsno products from 2001-2019 were used to compare with ELM (Table 1). The first one is the 

University of Arizona (UA) daily snow product version 1 with the spatial resolution of 4 km over the Conterminous US (Zeng 

et al., 2018). This product was generated by fully utilizing the field measurements from multiple in situ networks including 

SNOTEL constrained by the gridded precipitation and temperature data in the 4 km Parameter-elevation Regressions on 

Independent Slopes Model (PRISM). A series of algorithm robustness tests and independent accuracy evaluations against 190 
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remote sensing and airborne lidar measurements showed that the UA product is reliable as a reference snowpack dataset (Zeng 

et al., 2018). The second one is the SNOw Data Assimilation System (SNODAS) daily product with 1 km spatial resolution 

developed by the NOAA National Weather Service’s National Operational Hydrologic Remote Sensing Center (Center, 2004). 

SNODAS uses a physically consistent modeling and data assimilation framework to integrate physically-based model 

estimates and multi-source snow data from satellite remote sensing, airborne-based observations, and in situ measurements 195 

including SNOTEL. SNODAS has shown a similar performance as UA (Zeng et al., 2018). The SNODAS product is available 

from October, 2003 and thus only the data from 2004-2019 were used in the study. UA and SNODAS both assimilate the 

SNOTEL observations in their models directly, so better performance relative to those observations is expected, while the 

ELM simulations are not constrained by the SNOTEL data. 

 200 

Table 1. Summary of the in situ, remote sensing and data assimilation datasets used in the study. These datasets provide different 

snow properties variables, and snow cover fraction in both STC-MODSCAG/STC-MODDRFS and SPIReS was used to derive snow 

phenology metrics. 

Product 

Type 

Product name Snow property Spatial 

resolution 

Temporal 

resolution 

Period Reference 

In situ BCQC SNOTEL Snow water equivalent (SWE) Site-level daily 2001-2019 (Sun et al., 2019; Yan 

et al., 2018) 

Remote 

sensing 

MODIS 

MCD43A3 

Surface albedo (𝛼sur) 463 m daily 2001-2019 (Schaaf et al., 2002) 

STC-MODSCAG 

/STC-

MODDRFS 

Snow cover fraction (fsno) 

Snow albedo (𝛼sno) 

Snow albedo reduction (Rsno) 

Snow grain size (Ssno) 

463 m daily 2001-2019 (Rittger et al., 2020) 

SPIReS Snow cover fraction (fsno) 

Snow albedo (𝛼sno) 

Snow albedo reduction (Rsno) 

Snow grain size (Ssno) 

463 m daily 2001-2019 (Bair et al., 2021c) 

Data 

assimilation 

UA Snow water equivalent (SWE) 

Snow depth (Dsno) 

4 km daily 2001-2019 (Broxton et al., 2019; 

Zeng et al., 2018) 

SNODAS Snow water equivalent (SWE) 

Snow depth (Dsno) 

1 km daily 2004-2019 (Center, 2004) 

 

2.4 Snow phenology extraction and data processing 205 

Time series of fsno from ELM and two remote sensing snow products (i.e., STC-MODSCAG and SPIReS) were used to 

extract the snow phenology (Figure 2). First, based on the observed seasonal cycle of snow cover over the Northern 
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Hemisphere (Peng et al., 2013), the snow accumulation and snowmelt seasons are defined as the periods from September to 

January and from February to August, respectively. Next, four snow timing dates and one duration metric were retrieved 

from ELM and remote sensing products that include: (1) snow accumulation onset date (Accumulation_onset_date), (2) 210 

snow cover depletion onset date (Depletion_onset_date), (3) snow cover depletion midpoint date (Midpoint_date), (4) snow 

end date (End_date) and (5) snow duration days (Duration). Following (Peng et al., 2013), Accumulation_onset_date for 

year t is defined as the first continuous five days with fsno>0.05 during the snow accumulation season from September (year 

t-1) to January (year t), and End_date is defined as the last continuous five days with fsno>0.05 during the snowmelt season of 

the year t, to avoid the interference of ephemeral snow. Note that using different thresholds (e.g., 0.00, 0.03, 0.05, 0.10, 0.15) 215 

of fsno to defining Accumulation_onset_date and End_date can lead to different date estimates but the same conclusions, 

which are not shown in the paper. Duration was calculated as the number of days between Accumulation_onset date and 

End_date. Depletion_onset_date and Midpoint_date were determined by fitting the fsno time series during the snowmelt 

season using the sigmoid function (Anttila et al., 2018; Böttcher et al., 2014; Kouki et al., 2019): 

𝑓𝑠𝑛𝑜
𝐷𝑂𝑌 = 𝑎 +

𝑏

1+𝑒𝑐∙(𝐷𝑂𝑌−𝑑)
      (1) 220 

where DOY is day of year, and a, b, c and d are the fitted parameters. Specifically, the nonlinear Least Squares method was 

used to fit a sigmoid function. Following Anttila et al.(2018), Depletion_onset_date is defined as the date when the fitted 

sigmoid curve reaches 99% of its variation range, and Depletion_midpoint_date is defined as the date at the midpoint of the 

curve change (Figure 2). To reduce the impacts of noise, the retrievals at the individual pixels for a specific year was deemed 

as unsuccessful when (1) the fsno difference at the start and end date of snowmelt season is smaller than 0.05; and (2) for the 225 

sigmoid fitting, the coefficient of determination (R2) between observed and fitted fsno is smaller than 0.95 and RMSE is larger 

than 0.2. Only the pixels with successful retrievals of snow timing metrics for at least 10 years were used in the subsequent 

analysis. 

  

https://doi.org/10.5194/egusphere-2022-1097
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



10 

 

 230 

Figure 2: Time series of fsno and sigmoid curve fitting at a typical pixel, represented by black and red lines, respectively. The blue 

lines indicate four phenology dates and one duration, and the shaded area shows the snow accumulation season.  

 

MODIS data and ELM outputs were adjusted for temporal consistency and to unify the variable definitions. MCD43 only 

provides black-sky and white-sky albedo, and thus the ELM-derived ratio of diffuse to total solar radiation was used as a 235 

weighting factor to calculate 𝛼sur for the blue sky. For ELM, the average values of 𝛼sur from 11:30 am to 12:30 pm local solar 

time were calculated to match the time of MODIS MCD43 product, and those of fsno, 𝛼sno, Ssno, and Rsno from 10:00 am to 11:00 

am local solar time were calculated for ELM to match the time of STC-MODSCAG/STC-MODDRFS and SPIReS. 

 

The snow timing metrics and snow variables in the remote sensing and data assimilation products (Table 1) were aggregated 240 

to 0.125° using the area-weighted average method. They were temporally upscaled to seasonal, annual and multi-year average 

scales. For a specific year, only the pixels with fsno>0 were used to calculate the regional average values for 𝛼sur, fsno, 𝛼sno, Ssno, 

and Rsno, SWE and Dsno using the area-weighted average method. 

 

2.5 Evaluation methods 245 

Using the field measurements, remote sensing products, and data assimilation products as the reference, the spatio-temporal 

distributions of ELM snow outputs were evaluated. For spatial correlation, multiple statistical metrics were calculated for the 

multi-year average seasonal ELM outputs: correlation coefficient (R), Bias, relative Bias (rBias, calculated as the ratio of Bias 

to the average value), root mean square deviations (RMSD), and relative RMSD (rRMSD, calculated as the ratio of RMSD to 

the average value). This study mainly focused on winter (DJF) and spring (MAM) in the analysis, and there is little or no snow 250 

cover for the WUS in Summer (JJA) and Autumn (SON) in the ELM simulations (Figure S1). For the temporal correlation, R 

https://doi.org/10.5194/egusphere-2022-1097
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

between ELM and the reference datasets was calculated only for the grids where there are at least 10 snow covered days for 

one year excluding highly ephemeral snow.  

 

The long-term trends of snow variables over the whole WUS were detected using the non-parametric Mann–Kendall (MK) 255 

test. However, the MK test showed that there is no significant increasing or decreasing trend (p-value > 0.05) for all the snow 

variables, and thus the corresponding results are not included in the paper. The interannual variabilities (IAVs), defined as the 

standard deviation of the annual values, were calculated to evaluate whether ELM can capture the interannual variations of 

snow processes. In addition, the distributions of snow variables along the elevation gradients and forest cover for winter and 

spring were also analyzed.  260 

3 Results 

3.1 Snow properties 

3.1.1 Snow cover fraction 

The ELM simulated fsno has heterogeneous spatial patterns in the WUS for both winter and spring (Figure 3a-b). The regional 

average fsno is 0.41 and 0.15, respectively for spring and winter. Overall, ELM also shows similar spatial patterns with both 265 

STC-MODSCAG and SPIReS for all the seasons (Figure S1). STC-MODSCAG underestimates fsno over the northern regions 

in winter due to the known issues (Figure S1, see Section 2.3 for details). When excluding December and January with larger 

SZAs, STC-MODSCAG shows similar spatial distribution as SPIReS for February (Figure S2). In spring, compared to STC-

MODSCAG, ELM underestimates fsno over the western mountains in spring (Figure 3d). Compared to SPIReS, ELM has an 

overestimation over most regions in winter but performs well in spring (Figure 3g-h). Overall ELM has a high spatial 270 

correlation to both STC-MODSCAG and SPIReS (Table 2). For temporal correlation, ELM has a moderate correlation in the 

mountainous areas with both STC-MODSCAG and SPIReS in winter (Figure 3e,i), but has a relatively high correlation with 

them in spring (Figure 3f,j).  

 

ELM well reproduces the interannual variabilities and elevation gradients of fsno (Figure 4 and S3). The IAV values are 0.055 275 

and 0.049, respectively for ELM and SPIReS in winter, while they have closer values of 0.027, 0.029 and 0.030, respectively 

for ELM, STC-MODSCAG and SPIReS in spring (Figure 4a-b). ELM underestimates regional average fsno in spring, and is 

overall consistent with STC-MODSCAG and SPIReS in terms of magnitude and IAVs. As the elevation increases, fsno values 

in all three datasets become higher for both winter and spring (Figure 4c-d). At relatively low elevation, the fsno distributions 

in ELM are broader than those of SPIReS in winter, while the three datasets have more consistent elevation gradients in spring. 280 

Overall, when forest cover is higher, ELM show larger differences with SPIRES for spring and STC-MODSCAG for winter 

(Figure 4e-f). Same conclusions can be drawn for the regions below 42° in latitude (Figure S3). Considering the uncertainties 
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of the remote sensing retrievals, the ELM regional average fsno is within the range of STC-MODSCAG and SPIReS (Figure 

5a-b and S4). 

  285 

Figure 3: Spatial distributions of (a,b) fsno in ELM and (c,d,g,h) the fsno difference between ELM and two remote sensing products 

(i.e., STC-MODSCAG and SPIReS) and (e,f,i,j) their temporal correlations (Rs) for different seasons: (a,c,e,g,i) winter and (b,d,f,h,j) 

spring. In all panels, regions with no snow cover are masked with white color. The area-weighted average values are labelled in each 

panel. 290 
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Figure 4: (a,b) Time series of regional average values, (c,d) elevation gradients, and (e,f) change with forest cover of fsno in ELM 

(green), STC-MODSCAG (red), and SPIReS (blue) over the WUS. Panels (a,c,e) are for winter and panels (b,d,f) are for spring. In 

panels (c-f), the white dots represent the average values.  295 
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Figure 5: The area-weighted average (a,b) fsno, (c,d) Ssno and (e,f) Rsno for (a,c,e) winter and (b,d,f) spring of ELM (green), STC-

MODSCAG/STC-MODDRFS (red) and SPIReS (blue) over the WUS. The bar width represents the uncertainty bounds of STC-

MODSCAG/STC-MODDRFS and SPIReS from (Bair et al., 2021a). 

 300 

 

 

 

 

 305 
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Table 2. Evaluation of snow properties in ELM against two remote sensing products (STC-MODSCAG/STC-MODDRFS and 

SPIReS) and two data assimilation products (UA and SNODAS) for winter and spring. The statistical metrics were calculated using 

the data over the WUS, except that those against STC-MODSCAG/STC-MODDRFS in winter were calculated using the data over 

the WUS regions below 42° in latitude. 310 

Variable

s 

Products Winter Spring 

R Bias rBias

(%) 

RMSD rRMSD(%) R Bias rBias 

(%) 

RMS

D 

rRMSD(

%) 

fsno  STC-

MODSCAG 

0.91 -0.03 -10.4 0.13 39.5 0.90 -0.04 -22.1 0.11 57.8 

SPIReS 0.86 0.00 -1.0 0.16 39.1 0.94 -0.02 -11.7 0.08 46.6 

𝛼sur MCD43 0.77 -0.014 -4.2 0.097 30.1 0.71 0.004 2.3 0.056 29.6 

𝛼sno STC-

MODDRFS 

-0.09 -0.15 -19.3 0.18 22.2 

-0.27 -0.11 -14.7 0.13 17.6 

 SPIReS 

0.15 -0.13 -16.2 0.16 19.5 -0.09 -0.08 -11.4 0.11 14.8 

Ssno (μm) STC-

MODSCAG 

-0.15 78.2 37.7 159.3 76.9 0.02 -71.6 -17.2 226.5 54.4 

SPIReS 0.16 93.9 50.6 120.6 65.0 0.18 31.6 10.1 128.2 40.9 

Rsno STC-

MODDRFS 

0.58 -0.007 -77.7 0.011 126.7 0.50 0.000 -8.7 0.006 153.1 

SPIReS 0.10 -0.002 -26.4 0.014 170.0 0.63 -0.007 -66.3 0.013 118.8 

SWE(m

m) 

UA 0.91 -13.8 -27.8 37.1 75.1 0.90 -20.7 -35.9 62.9 108.9 

SNODAS 0.90 -10.2 -22.2 36.7 80.1 0.87 -20.4 -35.5 71.5 124.5 

Dsno(mm

) 

UA 0.92 -39.9 -21.6 119.2 64.5 0.91 -70.0 -43.2 172.9 106.8 

SNODAS 0.90 -48.1 -24.9 138.9 72.0 0.87 -85.7 -48.2 228.8 128.9 

 

3.1.2 Surface albedo and snow albedo 

Overall the ELM simulated 𝛼sur over snow cover regions shows similar spatio-temporal distribution with MCD43 for both 

winter and spring (Figure 6-7). Compared to MCD43, ELM overestimates 𝛼sur over Sierra Nevada and Rocky Mountains in 

winter, possibly due to the bias in snow cover (Figure 3c-d). The mean biases of ELM are -0.01 and 0.00, respectively for 315 

winter and spring. The spatial R values between ELM and MCD43 are 0.77 and 0.71, respectively for winter and spring (Table 

2). ELM shows a low temporal correlation to MCD43 over most regions in winter, but has a relatively higher temporal 

correlation in spring especially over the mountain areas and northern regions (Figure 6e-f). ELM also has similar interannual 

variability especially in winter (Figure 7a-b), similar elevation gradient (Figure 7c-d) and similar distributions under different 
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forest cover (Figure 7e-f) with MCD43. As fsno increases, 𝛼sur in both ELM and MCD43 increases and ELM and MCD43 have 320 

similar 𝛼sur distributions for different elevation intervals (Figure 7g-h). 

 

 

Figure 6: Spatial distributions of (a,b) 𝛼sur in ELM and (c,d) the 𝛼sur difference between ELM and MCD43 and (e,f) their temporal 

correlations (Rs) for different seasons: (a,c,e) winter and (b,d,f) spring. In all panels, the regions with no snow cover are masked 325 
with white color. The area-weighted average values are labelled in each figure. 
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Figure 7: (a,b) Time series of regional average values, (c,d) elevation gradients, (e-f) change with forest cover and (g,h) statistical 330 
distributions of 𝛼sur under different snow cover conditions in ELM (green) and MCD43 (red) for different seasons: (a,c,e,g) winter 

and (b,d,f,h) spring over the WUS. The IAV values of different datasets are shown in (a,b). In panels (c-h), the white dots represent 

the average values. 

 

 335 
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For 𝛼sno, ELM overall shows good consistencies with STC-MODDRFS and SPIReS over mountainous regions, but has an 

underestimation over other regions (Figure 8). Against STC-MODDRFS, the mean biases of ELM are -0.08 for winter over 

the WUS regions below 42° in latitude and -0.11 for spring over the WUS. Against SPIReS, the mean biases of ELM are -0.13 340 

and -0.08, respectively for winter and spring. The spatial R values between ELM and two remote sensing products are lower 

than 0.30 (Table 2). ELM shows a low temporal correlation to two remote sensing products over most regions, and has a 

relatively higher temporal correlation over the Rocky Mountains (Figure 8e-f). Larger inconsistencies between ELM and two 

remote sensing products are founded in terms of interannual variations, elevation gradients and change with forest cover 

(Figure 9 and S5). 345 

 

 

Figure 8: Spatial distributions of (a,b) 𝛼sno in ELM and (c,d,g,h) the 𝛼sno difference between ELM and two remote 

sensing products (i.e., STC-MODDRFS and SPIReS) and (e,f,i,j) their temporal correlations (Rs) for different seasons: 

(a,c,e,g,i) winter and (b,d,f,h,j) spring. In all panels, regions with no snow cover are masked with white color. The area-350 

weighted average values are labelled in each panel. 
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Figure 9: (a,b) Time series of regional average values, (c,d) elevation gradients, and (e,f) change with forest cover of 𝛼sno in ELM 355 
(green), STC-MODSCAG (red), and SPIReS (blue) over the WUS. Panels (a,c,e) are for winter and panels (b,d,f) are for spring. In 

panels (c-f), the white dots represent the average values.  

 

3.1.3 Snow grain size and snow albedo reduction 

There are large differences in the magnitudes and spatio-temporal patterns of Ssno between ELM, STC-MODSCAG/SPIReS 360 

(Figure 10 and 11). ELM has larger Ssno in spring than in winter (Figure 10a-b), with large negative biases over the western 

mountains and positive biases over the central and eastern regions compared to STC-MODSCAG with the mean biases of -

71.6 μm for spring (Figure 10c-d). ELM has positive biases over most regions compared to SPIReS, with the mean bias of 

93.9 μm and 31.6 μm, for winter and spring, respectively (Figure 10g-h). Ssno in ELM has a poor spatial correlation to the two 

MODIS products for both winter and spring (Table 2). ELM has varying temporal correlations with STC-MODSCAG and 365 
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SPIReS for both seasons with a mean value of around 0.3 (Figure 10 e-f and i-j). ELM has a similar interannual variability to 

SPIReS (Figure S6a-b and S7a-b). As the elevation increases, ELM and SPIReS have decreasing Ssno, in winter, but there is no 

obvious and comparable pattern along the elevation in spring (Figure S6c-d and S7c-d). As forest cover increases, the three 

data show larger differences for spring (Figure S6f and S7f). Considering the uncertainties of Ssno in the remote sensing 

products, the regional average Ssno is within the range between STC-MODSCAG and SPIReS (Figure 5c-d and S4). 370 

 

Figure 10: Spatial distributions of (a,b) Ssno in ELM and (c,d,g,h) the Ssno difference between ELM and two remote 

sensing products (i.e., STC-MODSCAG and SPIReS) and (e,f,i,j) their temporal correlations (Rs) for different seasons: 

(a,c,e,g,i) winter and (b,d,f,h,j) spring. In all panels, regions with no snow cover are masked with white color. The area-

weighted average values are labelled in each panel. 375 

 

There are also large spatial biases and low temporal correlations of Rsno between ELM, STC-MODDRFS and SPIReS (Figure 

11 and S4). In ELM, Rsno shows extremely high values in the northeastern corner for winter (Figure 11a), due to the large 

aerosol deposition in the aerosol deposition data (see Section 2.2). Apart from the northeastern corner, ELM is more similar 

to SPIReS in winter (Figure 11c-g). For spring, ELM is more similar to STC-MODSCAG, and has large negative biases 380 

relative to SPIReS (Figure 11d-h). ELM has higher temporal correlations with both remote sensing products in winter than 

spring, and shows higher correlations with SPIReS than STC-MODDRFS in spring (Figure 11 e-f and i-j). For interannual 
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variability, ELM is more identical to STC-MODSCAG in spring (Figure S8a-b and S9a-b) than SPIRES. However, note that 

ELM simulations in the study used climatological monthly aerosol deposition data, so they are not comparable to the remote 

sensing data in any specific year. In spring, Rsno in all the three datasets shows an increasing trend with elevation (Figure S8d 385 

and S9d). All the three data show larger differences across different forest cover (Figure S8e-f and S9e-f). Overall, Rsno is 

within the uncertainty ranges of STC-MODSCAG and SPIReS (Figure 5e-f and S4). 

  

Figure 11: Spatial distributions of (a,b) Rsno in ELM and (c,d,g,h) the Rsno difference between ELM and two remote 

sensing products (i.e., STC-MODDRFS and SPIReS) and (e,f,i,j) their temporal correlations (Rs) for different seasons: 390 

(a,c,e,g,i) winter and (b,d,f,h,j) spring. In all panels, regions with no snow cover are masked with white color. The area-

weighted average values are labelled in each panel. 

 

3.1.4 Snow water equivalent and snow depth 

ELM shows higher SWE values over the mountainous areas (Figure 12a-b), but also has larger underestimations over the 395 

mountainous areas, compared to both UA and SNODAS in both winter and spring (Figure 12c-d,g-h). Against UA and 

SNODAS, ELM has a mean bias of -20.7 mm (35.9%) and -20.4 mm (-35.5%), respectively in spring, while those in winter 

are -13.8 mm (-27.8%) and -10.2 mm (-22.2%), respectively. Overall ELM has a high spatial similarity with both UA and 
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SNODAS, and ELM has higher spatial consistency with UA than SNODAS in spring (Table 2). For temporal correlation 

(Figure 12e-f and i-j), ELM has high mean R values of 0.64 and 0.65 for winter and spring, compared to UA, and the R values 400 

are 0.53 and 0.54, respectively compared to SNODAS. ELM captures the interannual variabilities and elevation gradients of 

SWE well, but some underestimations of the regional average values are observed (Figure 13a-d). In winter, ELM has similar 

IAV values to UA and SNODAS, but has a lower value of 11.7 mm compared to UA (16.7 mm) and SNODAS (18.1 mm) in 

spring. Overall, ELM shows larger differences from UA and SNODAS, when there is a higher forest cover, especially for 

spring (Figure 13e-f). Dsno shows very similar results to SWE (Figure S10-S11). 405 

 

Figure 12: Spatial distributions of (a,b) SWE in ELM and (c,d,g,h) the SWE difference between ELM and two data 

assimilation products (i.e., UA and SNODAS) and (e,f,i,j) their temporal correlations (Rs) for different seasons: 

(a,c,e,g,i) winter and (b,d,f,h,j) spring. In all panels, regions with no snow cover are masked with white color. The area-

weighted average values are labelled in each panel. 410 
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Figure 13: (a,b) Time series of regional average values, (c,d) elevation gradients, and (e,f) change with forest cover of 

SWE in ELM (green), UA (red), and SNODAS (blue) over the WUS. Panels (a,c,e) are for winter and panels (b,d,f) are 415 

for spring. In panels (c-f), the white dots represent the average values. 

 

Compared to SNOTEL, UA presents a high correlation across sites (Figure 14), with the mean R values are 0.69. The mean 

RMSE of ELM is 189.6 mm, the Cascades Range shows larger RMSE values than other regions. ELM underestimates SWE 

nearly across all sites, with the mean biases of -122.7 mm. The biases of the meteorological forcing in NLDAS-2 and the 420 

spatial-scale mismatch between the point-scale SNOTEL and the grid-level ELM simulations can contribute to uncertainty in 

the comparison. 
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 425 

Figure 14. Spatial distribution of statistical metrics of ELM performance against the field SNOTEL data: (a) R, (b) 

Bias, and (c) RMSE. 

3.2 Snow phenology 

ELM well reproduces the snow phenology, compared to two remote sensing products (Figure 15-16). As expected, over 

mountainous areas, ELM shows earlier snow onset, later depletion and thus longer snow duration compared to flat and 430 

generally lower elevation areas (first column of Figure 15). Compared to STC-MODSCAG and SPIReS (second and third 

columns of Figure 15), ELM shows later Accumulation_onset_date over the whole WUS with a mean bias of +17.3 and +12.4 

days, respectively, which may be caused by the bias in the meteorological forcing data of NLDAS-2 and the simple 

parameterizations of the partitioning of precipitation into rainfall or snowfall; and has later Depletion_onset_date, but earlier 

Midpoint_date and End_date. For instance, ELM melts off earlier with a mean bias of -35.5 and –26.8 days, respectively than 435 

STC-MODSCAG and SPIReS, suggesting that ELM has higher snowmelt rate. Thus ELM has a short snow duration with a 

mean bias of -52.9 and -39.5 days, respectively compared to the two remote sensing products. The large biases exist in the 

western mountains for End_date (Figure 15k-l and n-o). Overall snow phenology in ELM has a high spatial correlation with 

that of the remote sensing products (Table 3). Although ELM overestimates Accumulation_onset_date and 

Depletion_onset_date and underestimates Midpoint_date, End_date and Duration, ELM well captures the IAVs of all five 440 

snow phenology metrics (first column of Figure 16), As the elevation increases, Accumulation_onset_date decreases but the 

other four metrics increases for all the three datasets (second column of Figure 16). ELM also has similar magnitudes and 

distributions for each elevation interval compared to the remote sensing products, while the three data show larger and larger 

differences with the increase of forest cover (third column of Figure 16). 

 445 
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Figure 15: Spatial distributions of (a,d,g,j,m) snow timing and (b-c,e-f,h-i,k-l,n-o) the snow timing difference between ELM and two 

remote sensing products ((i.e., STC-MODSCAG and SPIReS). Five snow timing metrics are included: (a-c) 

Accumulation_onset_date, (d-f) Depletion_onset_date, (g-i) Midpoint_date, (j-l) End_date, and (m-o) Duration. The regions with no 450 
successful retrievals of snow timing are masked with white color. The area-weighted average values are labelled in each figure. 

https://doi.org/10.5194/egusphere-2022-1097
Preprint. Discussion started: 17 October 2022
c© Author(s) 2022. CC BY 4.0 License.



26 

 

 

Figure 16: (a,d,g,j,m) Time series of regional average values, (b,e,h,k,n) elevation gradients and (c,f,i,l,o) change with forest cover of 

snow timing in ELM and two remote sensing products (i.e., STC-MODSCAG and SPIReS) for different metrics: (a-c) 

Accumulation_onset_date, (d-f) Depletion_onset_date, (g-i) Midpoint_date, (j-l) End_date, and (m-o) Duration over the WUS. The 455 
IAV values of different data are shown in (a,d,g,j,m). In panels (b-c,e-f,h-i,k-l,n-o), the white dots represent the average values.  
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Table 3. Evaluation of snow phenology in ELM against STC-MODSCAG and SPIReS. 

Products Variables R Bias rBias(%) RMSD rRMSD(%) 

STC-

MODSCAG 

Accumulation_onset_date 0.83 17.3 5.6 22.0 7.1 

Depletion_onset_date 0.77 6.8 9.4 15.6 21.6 

Midpoint_date 0.91 -9.2 -8.1 15.2 13.4 

End_date 0.81 -35.5 -32.1 42.9 38.9 

Duration 0.84 -52.9 -30.0 63.6 36.1 

SPIReS Accumulation_onset_date 0.86 12.4 3.9 14.6 4.6 

Depletion_onset_date 0.82 10.6 15.7 16.0 23.7 

Midpoint_date 0.93 -5.7 -5.3 12.6 11.7 

End_date 0.89 -26.8 -26.4 32.2 31.7 

Duration 0.90 -39.5 -25.0 45.2 28.5 

 460 

4 Discussion 

The evaluation results suggest an overall good performance of ELM in simulating snow properties, while some biases and 

uncertainties still exist, especially over mountainous areas with dense forest cover. Compared to the remote sensing products, 

ELM well reproduces the spatio-temporal pattern, interannual variabilities and elevation gradients of fsno and 𝛼sur (Figure 3-6), 

but large biases exist in Rocky Mountains and Sierra Nevada for 𝛼sur (Figure 3 and 5). There are still large spatio-temporal 465 

inconsistencies of Ssno and Rsno among ELM, STC-MODSCAG and SPIReS (Figure 10-11 and S6-S9). The underestimation 

of SWE and snow depth by ELM is comparable to the reported results based on CLM4 (Toure et al., 2018; Toure et al., 2016). 

The NLDAS-2 data used in the ELM simulations has large negative precipitation biases and high air temperature uncertainties 

over high-elevation terrain compared to both field measurements and PRISM over the WUS (Henn et al., 2018; O'Neill et al., 

2021; Pan et al., 2003; Schreiner-McGraw and Ajami, 2022), which can partly explain the negative SWE bias in ELM. Besides, 470 

a 0.125° grid may have high sub-grid variabilities of snow especially in mountainous areas (Meromy et al., 2013) and SNOTEL 

stations in mountains located on flat surface may not capture the sub-grid spatial variabilities (Toure et al., 2016). Overall 

ELM can well track the snow phenology, but shows a late start of snow accumulation in winter which is consistent with the 

underestimation of SWE and may be related to the precipitation and air temperature bias in the meteorological forcing data of 

NLDAS-2 and the partitioning of precipitation into rainfall or snowfall in ELM. An earlier snowmelt is also found in ELM, 475 

and there are similar issues in other LSMs, e.g., CLM4 (Toure et al., 2018) and Noah with Multi-Parameterization (Noah-MP) 

(Xiao et al., 2021). 
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There are still some uncertainties in the benchmarking datasets used in this study. First, the MCD43 product performs well in 

representing 𝛼sur during snow cover periods, but may have poor performance for ephemeral snow due to its assumptions of 480 

stable land surface status within 16 days (Wang et al., 2012; Wang et al., 2014). Besides, frequent cloud cover and a lack of 

explicit representations of topographic effects can affect the accuracy of the MCD43 product over mountainous areas (Hao et 

al., 2019; Hao et al., 2018a; Hao et al., 2018b). There are some inconsistencies between STC-MODSCAG and SPIReS (Figure 

3-4), due to the different algorithms and data processing (e.g., interpolation and filtering). Although the physically-based STC-

MODSCAG and SPIReS provide higher quality unbiased fsno estimates than the MOD10A1 snow product based on empirical 485 

algorithms against field measurements across different forest cover, snow cover, snow climate and viewing angles (Bair et al., 

2021c; Rittger et al., 2013; Stillinger et al., 2022), the issues of reflectance errors, one to many problems intrinsic to spectral 

unmixing, cloud contamination, topographic shadows, sun-sensor geometric effects, and the impacts of forest cover can still 

affect their reliabilities (Bair et al., 2021b; Raleigh et al., 2013; Stillinger et al., 2022). These issues can also affect the accuracy 

of extracted snow phenology (Section 2.4). Uncertainties of Ssno and Rsno in STC-MODSCAG/STC-MODDRFS and SPIReS 490 

exist (Bair et al., 2019). In summary, the heterogeneity of snow within pixels, relatively low spectral resolution, and 

interference from clouds limits the diagnostic capabilities of snow properties from MODIS. Ongoing and upcoming 

hyperspectral remote sensing missions (e.g., the recently launched Environmental Mapping and Analysis Program 

(https://www.enmap.org/) and NASA’s Surface Biology and Geology (Cawse-Nicholson et al., 2021) will enhance the abilities 

of remote sensing to monitor snow properties. There are also some discrepancies between UA and SNODAS (Figure 11-12). 495 

The uncertainties in the PRISM data over complex terrain (Henn et al., 2018) may degrade the performance of UA. Compared 

to ground survey data, SWE in SNODAS over alpine areas has degraded performance due to the neglect of wind redistribution 

of snow (Clow et al., 2012). Compared to GPS interferometric reflectometry snow depth data, SNODAS still needs to be 

improved over complex terrain and areas with high vegetation heterogeneities (Boniface et al., 2015). The independent 

comparisons also have shown the underestimations and overestimations of SNODAS (Bair et al., 2016; Dozier, 2011; Dozier 500 

et al., 2016). Developing reliable benchmarking datasets for advancing snow modeling is still challenging but necessary 

(Ménard et al., 2019). 

 

There is significant room for improving simulations of snow processes in ELM, ranging from the input forcing data to 

parameter settings and model structure. Meteorological forcing data has been demonstrated to have large impacts on snow 505 

simulations (Günther et al., 2019). The NLDAS-2 forcing data was used to drive ELM in the study, which is rather coarse to 

represent the sub-grid heterogeneity of precipitation over mountainous areas (Tesfa et al., 2020). Although NLDAS-2 has 

many improvements compared to NLDAS-1 (Xia et al., 2012), there are still some spatio-temporal discontinuities in the 

precipitation of NLDAS-2 (Ferguson and Mocko, 2017; Xia et al., 2019). Besides, there are still some documented systematic 

precipitation and air temperature biases in NLDAS-2 especially over mountainous areas (Henn et al., 2018; O'Neill et al., 510 

2021; Pan et al., 2003). The 1.9°×2.5° climatological aerosol deposition data used in the ELM simulations is too coarse to 
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capture the fine-scale spatial variations of BC and dust, which limits the accuracy of simulating Rsno and thus 𝛼sur. Some 

parameters in ELM were set empirically or from the literature, which may contain large uncertainties. For instance, in the snow 

cover parameterization of ELM, snow accumulation ratio and snowmelt shape factor are empirically set as fixed values without 

spatio-temporal variations (Swenson and Lawrence, 2012). In the SNICAR-AD snow albedo models of ELM, spherical snow 515 

grain shape, internal mixing of BC-snow and external mixing of dust-snow were set by default, which may be oversimplified 

(Hao et al., 2022). Further efforts are needed to calibrate these parameters using remote sensing or data assimilation products. 

The model structures used in different LSMs have different complexities, assumptions and simplifications (Lee et al., 2021; 

Magnusson et al., 2015). Some snow processes are modelled empirically, e.g., the snow cover over complex terrain was simply 

parameterized as a function of the standard deviation of elevation, which may explain the large biases of fsno (Figure 3) over 520 

mountainous areas (Swenson and Lawrence, 2012). The large uncertainty of Ssno is relevant to the unrealistic snow aging 

representations in ELM (Qian et al., 2014). Some important processes are missed in ELM, such as the snow redistribution and 

sublimation by blowing snow (Xie et al., 2019), and the interaction between vegetation and snow, which possibly lead to the 

degraded performance of ELM (Section 3). Developing accurate forcing data, improving/choosing suitable snow 

models/parameterizations, and calibrating/optimizing model parameters are all important for accurate simulations of snow 525 

processes in LSMs. 

 

Further studies are needed to conduct systematic diagnosis and attributions of ELM simulation biases and evaluate the ability 

of ELM in capturing the long-term trends and climate effects of snow. Attributing the snow simulation biases to the specific 

parameterizations or processes is still challenging but necessary to identify and locate the major sources of errors. Because the 530 

snow processes are coupled and impacted by each other, further sensitivity analysis and numerical experiments varying factors 

one at a time are needed. An international coordinated project of the intercomparison of snow schemes in Earth system models, 

ESM-SNOWMIP, provides a good opportunity for ELM to identify crucial processes leading to large biases in simulated snow 

and compare with other LSMs from local to global scales (Krinner et al., 2018; Menard et al., 2021). In this study, we found 

no significant increasing or decreasing trend of snow from 2001 to 2019 over the WUS for both ELM and other benchmarking 535 

datasets. However, 19 years are not long enough to characterize long-term trend of snow and analysis was not performed on 

discrete river basin or elevation subsets that may be experiencing change nor during the JJA time period. This study only 

evaluated offline land-only ELM simulations, but how ELM can capture the impacts of snow on regional climate needs further 

investigations by performing E3SM simulations with active land and atmosphere model. 

5 Conclusions 540 

Snow over the WUS plays an important role in regional climate and hydrological and ecological systems as well as human 

society. This study systematically evaluated the snow properties (including 𝛼sur, 𝛼sno, fsno, Ssno, Rsno, SWE and Dsno) and snow 

phenology (including four snow dates and one snow duration) simulated by ELM using SNOTEL field measurements, MODIS 
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remote sensing products and two data assimilation products. Overall, the ELM snow simulations agree well with the 

benchmarking datasets in terms of spatio-temporal distributions, interannual variabilities and elevation gradients for different 545 

snow properties. However, ELM has large biases of fsno for dense forest cover and 𝛼sur in the Rocky Mountains and Sierra 

Nevada, while underestimating SWE and Dsno, especially over mountainous areas with dense forest cover for both winter and 

spring. The ELM simulations shows large inconsistencies with the remote sensing retrievals of Ssno and Rsno. Compared to 

SNOTEL, ELM has larger negative biases of SWE, probably because there are some systematic biases of precipitation and air 

temperature in NLDAS-2. Besides, there is a large spatial-scale mismatch between point-scale field measurements and grid-550 

level simulations, which can contribute to the large biases of ELM. There are also some inconsistencies of snow phenology 

between ELM and remote sensing products with ELM showing later snow onset, earlier depletion and shorter snow duration, 

consistent with the underestimation of SWE. This study documents the ELM performance in simulating snow processes and 

demonstrates the necessity for further improving the snow properties and snow phenology represented in LSMs. Further efforts 

are needed to improve the accuracy of snow properties, especially Ssno and Rsno in both ELM simulations and remote sensing 555 

retrievals and resolve the early melt-off of snow in spring and underestimations of SWE in ELM especially over the complex 

terrain of the WUS. 

 

Appendix A 

Table A1. The acronyms and symbols used in the study. 560 

Category Abbreviation or symbol Explanation 

Snow property 𝛼sur Surface albedo 

𝛼sno Snow albedo 

fsno Snow cover fraction 

Ssno Snow grain size 

Rsno Snow albedo reduction 

SWE Snow water equivalent 

Dsno Snow depth 

Snow phenology Accumulation_onset_date Snow accumulation onset date 

Depletion_onset_date Snow cover depletion onset date 

Midpoint_date Snow cover depletion midpoint date 

End_date Snow end date 

Duration Snow duration days 

Model name E3SM Energy Exascale Earth System Model 
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ELM E3SM land model 

LSM Land surface model 

CLASS Canadian Land Surface Scheme 

CLM Community Land Model 

SNICAR the Snow, Ice, and Aerosol Radiative model 

SNICAR-AD SNICAR with the delta-Eddington adding–doubling 

radiative transfer solver 

PRISM Parameter-elevation Regressions on Independent Slopes 

Model 

Noah-MP Noah with Multi-parameterization 

Dataset name MODIS Moderate Resolution Imaging Spectroradiometer 

BCQC Bias Correction and Quality Control data 

SNOTEL Snow Telemetry stations 

STC-MODSCAG/STC-

MODDRFS 

the spatially and temporally complete (STC) MODIS 

Snow-Covered Area and Grain size/MODIS Dust and 

Radiative Forcing in Snow 

MCD43A3 MODIS daily surface albedo version 6 product 

SPIReS Snow Property Inversion From Remote Sensing product 

UA University of Arizona daily snow product 

SNODAS SNOw Data Assimilation System daily snow product 

MOD10A1 Official MODIS snow cover product 

NLDAS-2 National Land Data Assimilation System phase 2 

Accuracy metrics R2 Coefficient of determination 

RMSE Root mean square error 

IAV Interannual variability 

R Correlation coefficient 

rBias Relative Bias 

RMSD Root mean square deviations 

rRMSD Relative RMSD 

Others DOY Day of year 

SZA Solar zenith angle 

BC Black carbon 

LAP Light-absorbing particles 
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MK Mann–Kendall test 

NASA National Aeronautics and Space Administration 

 

 

 

Table A2. Overview of some typical studies and this study on the evaluation of snow processes in land surface models 

(LSMs). 565 

Model Spatial 

resolution 

Involved Snow 

properties 

Involved snow phenology 

metrics 

Reference 

CLM4 0.5°×0.67° fsno, SWE, Dsno - (Toure et al., 2016) 

CLM4.5 0.5°×0.67° fsno, SWE, Dsno SEnDt (Toure et al., 2018) 

CLASS 0.25° 𝛼sur, fsno, SWE - (Verseghy et al., 2017) 

Noah‐MP 10 km 𝛼sur, fsno, Dsno - (Jiang et al., 2020) 

E3SM v1 1° SWE - (Brunke et al., 2021) 

ELM 0.125° 𝛼sur, fsno, Ssno, Rsno, 

SWE, Dsno 

SOnDt, SMOnDt, 

SMMidDt, SEnDt, SDurDy 

This study 

 

Code and data availability 

ELM model codes with new updates used in the study are publicly available at https://doi.org/10.5281/zenodo.6324131. All 

the SRTM DEM, and GFCC forest cover, and MCD43 surface albedo data can be freely downloaded from the Google Earth 

Engine (GEE, https://earthengine.google.com). The STC-MODSCAG/STC-MODDRFS and SPIReS data used in the study 570 

are available at https://doi.org/10.5281/zenodo.7194702. The SPIReS code is publicly available at 

https://github.com/edwardbair/SPIRES. UA and SNODAS data can be accessed at https://nsidc.org/data/nsidc-0719 and 

https://nsidc.org/data/g02158, respectively. BCQC SNOTEL data is available at https://www.pnnl.gov/data-products. Codes 

to process data, generate all results and produce all figures are archived at https://github.com/daleihao/snow_evaluation_ELM. 
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